Installation

Quick Overview

  • ✅ Check your system has an NVIDIA GPU
  • ⚡ Install CUDA SDK
  • 📦 Install CuPy (matching your CUDA version)
  • ⬇️ Install GEM-pRF using pip

Step-by-Step Guide

GEM-pRF requires an NVIDIA GPU and CUDA for accelerated pRF computation. Make sure your system has a compatible GPU available.

⚠️ Ensure your system has a compatible NVIDIA GPU available.

Step 1. Create a new python environment (recommended)

  • Create a fresh conda environment:
    conda create --name gemprf python=3.10
    conda activate gemprf

Step 2. Set up GPU environment

  • Install the CUDA SDK.
  • Check your CUDA installation:
    nvcc --version
    nvidia-smi
  • Install a CuPy build that matches your CUDA version:
    pip install cupy-cuda12x   # Replace 12x with your CUDA version

Step 3. Verify CUDA–CuPy compatibility

  • Run a quick test to confirm CuPy can use the CUDA runtime correctly:
    python -c "import cupy as cp; print(cp.arange(5) ** 2)"
  • If this fails, your CuPy build does not match your CUDA runtime.

Step 4. Install GEM-pRF via pip

Step 5. Try the GEMpRF-DemoKit (optional)

✅ Once installed, proceed to Running GEM-pRF.