Installation
Quick Overview
- ✅ Check your system has an NVIDIA GPU
- ⚡ Install CUDA SDK
- 📦 Install CuPy (matching your CUDA version)
- ⬇️ Install GEM-pRF using pip
Step-by-Step Guide
GEM-pRF requires an NVIDIA GPU and CUDA for accelerated pRF computation. Make sure your system has a compatible GPU available.
⚠️ Ensure your system has a compatible NVIDIA GPU available.
Step 1. Create a new python environment (recommended)
- Create a fresh conda environment:
conda create --name gemprf python=3.10
conda activate gemprf
Step 2. Set up GPU environment
- Install the CUDA SDK.
- Check your CUDA installation:
nvcc --version
nvidia-smi - Install a CuPy build that matches your CUDA version:
pip install cupy-cuda12x # Replace 12x with your CUDA version
Step 3. Verify CUDA–CuPy compatibility
- Run a quick test to confirm CuPy can use the CUDA runtime correctly:
python -c "import cupy as cp; print(cp.arange(5) ** 2)" - If this fails, your CuPy build does not match your CUDA runtime.
Step 4. Install GEM-pRF via pip
- Install from PyPI:
pip install gemprf - Latest releases: PyPI – gemprf
Step 5. Try the GEMpRF-DemoKit (optional)
- Follow the instructions in the Getting Started with GEMpRF-DemoKit tutorial to verify your installation.
✅ Once installed, proceed to Running GEM-pRF.